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Abstract

Trained on large collections of image-text pairs, visual-
language models have been shown to be capable to segment
the same images into different text-defined regions without
retraining, known as open-vocabulary segmentation. For
other modalities than RGB images, input-text pairs are not
available in the same scale. This work investigates how
other modalities can be processed without directly available
input-text pairs and how such geometric cues as additional
inputs can improve the performance of open-vocabulary
segmentation. For this purpose, we adopt a two-stage
model, where the first stage generates the mask proposals
and proposal embeddings via MaskFormer, while the sec-
ond encodes masked images and text into the same latent
space using CLIP. To adapt this two-stage model for the
new modality, we add an additional backbone into Mask-
Former and a CLIP encoder into the second stage for the
new modality. We conduct experiments with various modal-
ity generation approaches, as well as fusion techniques to
combine color-based features with geometry-based features
in the latent space. We observe an improvement when we
only have the additional backbone in the first stage. We con-
duct an ablation study to adapt CLIP to different modalities.
We also show that having the additional geometric cues as
input improves the segmentation boundaries and reduces
pixel misclassification. We validate our best-model zero-
shot on the real-world NYUv2 RGB-D dataset and achieve
a 4.5% improvement in mIoU over the original open vocab-
ulary segmentation model.

1. Introduction
Open vocabulary segmentation has emerged for RGB

frames to enrich scene understanding through the interpre-
tation of arbitrary queries [4, 6, 8, 9, 15]. It enables rich
semantic understanding by not restricting segmentation to
predefined categories. This has significant implications for
user-facing applications and autonomous robotics.

These applications could benefit from the use of geomet-
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Figure 1: Multi-Modal Open Vocabulary Segmentation.
We leverage additional input modalities to boost the perfor-
mance of open-vocabulary image segmentation approaches.

ric cues, which can be complementary to RGB features, as
illumination changes do not impact them. Geometric cues
are now available in many devices and robots allowing the
real-world application of multi-modal open vocabulary seg-
mentation. However, we find a scarcity of large-scale color-
and geometry-based input-text pairs. To address this limita-
tion, we employ zero-shot modality generation techniques
and adapt models pre-trained on RGB-text pairs to process
multi-modal input-text pairs.

In this study, we explore whether off-the-shelf monoc-
ular prediction techniques can facilitate learning open vo-
cabulary segmentation. We generate new modalities for a
large-scale RGB dataset, COCO-stuff [1] to train our newly-
designed model. Next, we directly evaluate our method
on ADE20K [17] with synthetic modalities and NYUv2
dataset [13] with noisy depth frames. This shows the cross-
dataset transferability of open vocabulary segmentation. We
also experiment with different monocular predictors and fu-
sion techniques to fuse RGB-X features, where X is the ad-
ditional modality. Moreover, we propose adapting CLIP for
different modalities to further improve generalizability. We
show that the addition of geometric cues improves the seg-
mentation results leading to more accurate predictions and
achieving a 4.5% improvement in mIoU values on NYUv2.



2. Related Work
2.1. Modality Generation Methods

Given the lack of available large-scale multi-modal
datasets, we use large-scale RGB datasets and generate
new modalities using MiDaS [12] and Omnidata Vision [5].
They are shown to work zero-shot on different datasets for
modality estimation from RGB frames. In our experiments,
we use depth frames generated from MiDaS and Omnidata
and the surface normals generated by Omnidata.

2.2. Multi-Modal Fusion

Semantic segmentation from RGB frames can be en-
hanced by using geometric cues. For closed-set segmenta-
tion, it is shown that using geometric cues enhances the seg-
mentation quality [2, 7, 14, 16]. We experiment with simple
late-fusion techniques, average, and summation in addition
to Attention Complementary Module (ACM) from ACNet
[7]. Although the original paper applies ACM throughout
the encoding stage, we only use them at the end of encod-
ing to keep the number of learnable parameters smaller and
keep the original model structure.

2.3. Open Vocabulary Segmentation

Open vocabulary segmentation is the task of understand-
ing an image and where the objects are located based on
arbitrary text queries. After CLIP [11] was proposed, open
vocabulary segmentation research has shifted towards align-
ing pixel- or segment-level embeddings with text embed-
dings obtained from CLIP. In this direction, LSeg [8] uses
CLIP text embeddings and aligns pixel-level features to the
corresponding semantic class. OpenSeg [6] instead aligns
segment-level features with text embedding via region-word
grounding. Our approach is based on the two-stage model
approach OVSeg [9], where the first stage generates class-
agnostic mask proposals, and the second utilizes CLIP to
find the associated class.

Our approach differs from previous methods as we uti-
lize additional geometric cues. We also introduce a separate
backbone in MaskFormer for the new modality and perform
two-stage training. Moreover, to the best of our knowledge,
we are also the first to fine-tune CLIP models to process
multi-modal inputs.

3. Methodology
We leverage a two-stage model for open vocabulary seg-

mentation, where the first stage is a MaskFormer [3] and the
second is CLIP image and text encoders [11]. The archi-
tecture is based on OVSeg [9], which is shown to general-
ize well across datasets on RGB images. The MaskFormer,
which generates proposal embeddings and mask proposals,
was previously trained with the following loss.

Ltotal = Lcls + 20 ∗ Lmask + Ldice (1)

where Lcls is the cross entropy loss for each class predic-
tion of a masked region, Lmask is the sigmoid focal loss as
used in [10], and Ldice is Dice loss to measure the similar-
ity between the predicted region and the ground truth mask
based on the overlapping regions as defined in [6].

To process geometric cues, we add an X-backbone to
encode the additional modality to the latent space. Initial-
ized from RGB-backbone, we fine-tune X-backbone with
the loss defined in Eq. 1 in a supervised manner. We exper-
iment with the following late-fusion techniques to combine
RGB and X embeddings in the latent space.

• Sum: fout = frgb + fx

• Average: fout = (frgb + fx)/2

• Attention: fout = ACM(fx) ∗ frgb +ACM(frgb) ∗ fx
where frgb and fx are the embeddings of RGB and X frames.
For more details in inference, please refer to OVSeg [9].

In the second stage, CLIP is adapted for masked modali-
ties while MaskFormer is frozen. To adapt CLIP to process
the additional modality, we apply unsupervised training us-
ing RGB-X pairs. Initialized from CLIP-RGB, we add a
CLIP-X encoder and freeze all other components. We use
cosine similarity loss between features obtained from these
two separate encoders. As we freeze CLIP-RGB, we antic-
ipate improving the segmentation further by leveraging the
full potential of geometric cues while retaining CLIP’s gen-
eralization capabilities. For inference, we combine the em-
beddings from CLIP-RGB and -X encoders with a weighted
average where weights are given as hyperparameters. The
rest of the prediction is the same as in OVSeg.

4. Experiments
4.1. Datasets and Metric

We train our models with COCO-Stuff 171 [1], and val-
idate them on ADE20K-150 and NYUv2 datasets [13, 17].
COCO-Stuff [1]: COCO-Stuff dataset provides 118K
RGB training images with pixel-level annotations from in-
door and outdoor scenes. The class annotations come from
COCO captions, which include 171 distinct classes.
ADE20K-150 [17]: ADE20K dataset includes RGB im-
ages from both indoor and outdoor scenes. It has 2000 im-
ages for validation. It comprises 150 classes, 110 of which
are distinct from COCO-stuff.
NYUv2 [13]: NYUv2 is a real-world RGB-D dataset. It in-
cludes a total of 1449 RGB images with 40 classes. We test
our approach on NYUv2 to evaluate how well our model
performs on a real-world dataset.

To evaluate our models, we use mean Intersection over
Union (mIoU), the mean ratio of the intersection and union



Method Modal-X Fusion mIoU
OVSeg [9] - 29.6
OVSeg + D-Backbone Sum 30.1
OVSeg + D-Backbone Average 30.2
OVSeg + D-Backbone Attention 29.9

Table 1: Comparison of RGB-X Fusion Techniques. We
test our model on ADE20K with monocular depth frames
generated by MiDaS [12].

of the target ground-truth pixels, and the predictions. It
measures the quality of the segmentation masks. Using
mIoU metric and evaluation datasets, we validate our meth-
ods’ segmentation and generalization capabilities.

4.2. MaskFormer Tuning for RGB-X Frames

First, we add a separate X-backbone to the MaskFormer
architecture and test different fusion techniques. To do so,
we generate the depth frame for each image in COCO-Stuff
and ADE20K via MiDaS library. We fine-tune X-backbone
with COCO-stuff and validate it over ADE20K.

We report the results with different fusion techniques and
compare them against OVSeg in Table 1. Adding depth im-
proves the segmentation metrics slightly when tested over
ADE20K with synthetic depth frames, leading to more ac-
curate segmentation masks and class labels. When fusion
techniques are compared, we see that average achieves the
best results. The fusion with attention mechanism does not
perform as well as average, which is likely due to additional
learnable parameters introduced by the attention model.

We also perform a qualitative comparison when the cho-
sen fusion technique is applied to combine RGB features
with the features extracted from Omnidata-generated sur-
face normals. This time, we fine-tune the X-backbone with
synthetic surface normals, then test it over ADE20K. As
seen in Figure 2, the use of surface normals gives finer seg-
mentation boundaries while also removing some misclassi-
fied regions.

4.3. CLIP Adaptation for Geometric Cues

After the first step, we add the CLIP-X encoder for the
new modality into the second stage of the model. It is a
copy of the original CLIP ViT-L/14 architecture. It en-
codes the new modality into the same geometric space as
RGB features and text features. To retain CLIP’s general-
ization capabilities, we take an unsupervised learning ap-
proach, keep the weights of the original CLIP model and
only fine-tune the new backbone using similarity loss be-
tween RGB-features and X-features.

While training the model, we first evaluate the model
with CLIP-X discarding CLIP-RGB embeddings and val-
idating if the new encoder is learning according to the ob-
jective. We present our results in Table 2, where we com-

(a) OVSeg

(b) MOVSeg (Omnidata Surface Normal)
Figure 2: Qualitative Comparison of Segmentation
Masks. We compare the segmentation masks generated by
baseline OVSeg against our multi-modal open-vocabulary
segmentation approach MOVSeg.

Patch Embedding Modal-X Generation mIoU
CLIP-RGB - 29.6
CLIP-D MiDaS 9.14
CLIP-D Omnidata Depth 12.8
CLIP-N Omnidata Normal 19.4
CLIP-RGB + CLIP-D MiDaS 29.4
CLIP-RGB + CLIP-D Omnidata Depth 26.5
CLIP-RGB + CLIP-N Omnidata Normal 29.3

Table 2: Ablation on Patch Embeddings. We compare
different patch embeddings in CLIP.

pare different modality generation methods to synthesize
the new modality before adapting CLIP.

Given the results of Table 2, the CLIP-N has the highest
performance when tested alone. This could be due to the
information-richness of surface normals compared to depth
frames. However, when combined, performance does not
improve compared to the baseline model with only RGB
images. This might have been caused by the quality of
synthetic modalities or because CLIP-RGB was originally
trained with 400 million images and it is not trivial to adapt



Model Modal-X Fusion mIoU
OVSeg [9] - 34.2
MOVSeg (Ours) Average 38.7

Table 3: Results on NYUv2 [13]. We compare OVSeg [9]
with our multi-modal open vocabulary segmentation model.

it to new domains with only 118K RGB-X pairs.

4.4. Zero-Shot Segmentation Results on NYUv2

Our objective is to obtain a model that can use geometric
cues for improving the open-vocabulary segmentation ca-
pabilities. Hence, we test our best model on the real-world
multi-modal dataset, NYUv2, and compare it against the
original model, which only uses RGB values. We achieve a
4.5% improvement in the mIoU metric (see Table 3).

5. Conclusion

In this paper, we present our findings on open vocabu-
lary segmentation from multi-modal inputs. We experiment
with different modality generation methods and fusion tech-
niques. We propose adapting CLIP to new modalities to
enhance the segmentation results.

We observe slight improvements in half-synthetic
datasets when we process RGB-X frames. Furthermore,
we test our model on the real-world dataset NYUv2 achiev-
ing a 4.5% improvement in mIoU. This demonstrates the
model’s ability to enhance performance even when learning
from synthetic depth frames.

Future work could involve exploring advanced modal-
fusion techniques with shared weights between RGB-X en-
coders and experimenting with attention modules for CLIP-
RGB and CLIP-X fusion. Additionally, the use of triplet
loss could be explored for CLIP adaptation.

Limitations

Our study reveals limitations for open vocabulary seg-
mentation on multi-modal frames. We find a scarcity of
large-scale real-world datasets with diverse classes, hinder-
ing semantic segmentation tasks. Existing modality gener-
ation methods are not robust enough for downstream learn-
ing, introducing noise and limiting model performance.

Adapting CLIP to new domains poses challenges, given
its training on millions of image-text pairs. The modal-
ity generation techniques further introduce noise, degrad-
ing performance. To address these issues, we could explore
simulation-generated high-quality RGB-X pairs for CLIP
adaptation and experiment with advanced loss functions,
such as triplet loss.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In CVPR, 2018.
[2] Jinming Cao, Hanchao Leng, Dani Lischinski, Daniel

Cohen-Or, Changhe Tu, and Yangyan Li. Shapeconv: Shape-
aware convolutional layer for indoor rgb-d semantic segmen-
tation. In ICCV, 2021.

[3] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In NeurIPS, 2021.

[4] Zheng Ding, Jieke Wang, and Zhuowen Tu. Open-
vocabulary universal image segmentation with maskclip.
2023.

[5] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In ICCV, 2021.

[6] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scal-
ing open-vocabulary image segmentation with image-level
labels. In ECCV, 2022.

[7] Xinxin Hu, Kailun Yang, Lei Fei, and Kaiwei Wang. Acnet:
Attention based network to exploit complementary features
for rgbd semantic segmentation. In ICIP, 2019.

[8] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and Rene Ranftl. Language-driven semantic seg-
mentation. In ICLR, 2022.

[9] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan
Zhao, Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana
Marculescu. Open-vocabulary semantic segmentation with
mask-adapted clip. In CVPR, 2023.

[10] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. PAMI,
2018.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Marina Meila
and Tong Zhang, editors, ICML, 2021.
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